Selected Publications

Books

Survey Articles

Journal Papers

Conference Papers

  • [MICRO’24] M. Wang, I. McInerney, B. Stellato, F. Tu, S. Boyd, K.-H. So, K.-T. Cheng, “Multi-Issue Butterfly Architecture for Sparse Convex Quadratic Programming,” IEEE/ACM International Symposium on Microarchitecture (MICRO), Austin, USA, 2024.
  • [JSSC’24] Z. Yue, Y. Wang, H. Wang, R. Guo, F. Tu, J. Yang, S. Wei, Y. Hu, S. Yin, “CV-CIM: A Hybrid Domain XOR-derived Similarity-aware Computation-in-memory Supporting Cost Volume Construction,” IEEE Journal of Solid-State Circuits (JSSC), 2024.
  • [ISCA’24] Z. Yue, H. Wang, J. Fang, J. Deng, G. Lu, F. Tu, R. Guo, Y. Li, Y. Qin, Y. Wang, C. Li, H. Han, S. Wei, Y. Hu, S. Yin, “Exploiting Similarity Opportunities of Emerging Vision AI Models on Hybrid Bonding Architecture,” International Symposium on Computer Architecture (ISCA), Buenos Aires, Argentina, 2024. (Acceptance Rate: 12.8% = 54/423, Covered by SemiInsights)
  • [VLSI’24] R. Guo, X. Chen, L. Wang, F. Tu, S. Wei, Y. Hu, S. Yin, “A 28nm 4170-TFLOPS/W/b and 195-TFLOPS/mm2/b Multiply-Free Fully-Digital Floating-Point Compute-In-Memory Macro with Mitchell’s Approximation,” Symposium on VLSI Technology and Circuits (VLSI), Hawaii, USA, 2024.
  • [SCIS’24] W. Wu, F. Tu, X. Li, S. Wei, S. Yin, “SWG: An Architecture for Sparse Weight Gradient Computation,” Science China Information Sciences (SCIS), 2024.
  • [TCAS-I’24] X. Zhao, L. Chang, D. Fan, Z. Hu, T. Yue, F. Tu, J. Zhou, “HDSuper: High-Quality and High Computational Utilization Edge Super-Resolution Accelerator With Hardware-Algorithm Co-Design Techniques,” IEEE Transactions on Circuits and Systems I (TCAS-I), 2024.
  • [TCAD’24] J. Zhou, J. Wu, Y. Gao, Y. Ding, C. Tao, B. Li, F. Tu, K.-T. Cheng, K.-H. So, N. Wong, “DyBit: Dynamic Bit-Precision Numbers for Efficient Quantized Neural Network Inference,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2024.
  • [MICRO’23] J. Deng, X. Tang, J. Zhang, Y. Li, L. Zhang, B. Han, H. He, F. Tu, L. Liu, S. Wei, Y. Hu, S. Yin, “Towards Efficient Control Flow Handling in Spatial Architecture via Architecting the Control Flow Plane,” IEEE/ACM International Symposium on Microarchitecture (MICRO), Toronto, Canada, 2023. (Acceptance Rate: 23.8% = 101/424)
  • [DAC’23] Y. Zhu, Z. Zhu, G. Dai, F. Tu, H. Sun, K.-T. Cheng, H. Yang, Y. Wang, “PIM-HLS: An Automatic Hardware Generation and Scheduling for Processing-in-Memory-based Neural Network Accelerators,” Design Automation Conference (DAC), San Francisco, USA, 2023. (Acceptance Rate: 23%)
  • [TCAS-I’23] W. Wu, F. Tu, M. Niu, Z. Yue, L. Liu, S. Wei, X. Li, Y. Hu, S. Yin, “STAR: An STGCN ARchitecture for Skeleton-based Human Action Recognition,” IEEE Transactions on Circuits and Systems I (TCAS-I), 2023.
  • [TC’22] L. Liu, Z. Qu, Z. Chen, F. Tu, Y. Ding, Y. Xie, “Dynamic Sparse Attention for Scalable Transformer Acceleration,” IEEE Transactions on Computers (TC), 2022.
  • [TCAS-I’22] J. Yang, F. Tu, Y. Li, Y. Wang, L. Liu, S. Wei, S. Yin, “GQNA: Generic Quantized DNN Accelerator With Weight-Repetition-Aware Activation Aggregating,” IEEE Transactions on Circuits and Systems I (TCAS-I), 2022.
  • [ISCA’22] J. Lin, L. Liang, Z. Qu, I. Ahmad, L. Liu, F. Tu, T. Gupta, Y. Ding, Y. Xie, “INSPIRE: In-Storage Private Information Retrieval via Protocol and Architecture Co-design,” International Symposium on Computer Architecture (ISCA), New York City, USA, 2022. (Acceptance Rate: 16.8% = 67/400)
  • [DAC’22] H. Lin, M. Yan, D. Wang, M. Zou, F. Tu, X. Ye, D. Fan, Y. Xie, “Alleviating Datapath Conflicts and Design Centralization in Graph Analytics Acceleration,” Design Automation Conference (DAC), San Francisco, USA, 2022. (Acceptance Rate: 23%)
  • [TCAD’22] L. Liang, Z. Qu, Z. Chen, F. Tu, Y. Wu, L. Deng, G. Li, P. Li, Y. Xie, “H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2022.
  • [ASPLOS’22] Z. Qu, L. Liu, F. Tu, Z. Chen, Y. Ding, Y. Xie, “DOTA: Detect and Omit Weak Attentions for Scalable Transformer Acceleration,” ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Lausanne, Switzerland, 2022. (Acceptance Rate: 20.2% = 80/397)
  • [ICCAD’21] H. Amrouch, J. Chen, K. Roy, Y. Xie, I. Chakraborty, W. Huangfu, L. Liang, F. Tu, C. Wang, M. Yayla, “Brain-Inspired Computing: Adventure from Beyond CMOS Technologies to Beyond von Neumann Architectures,” International Conference on Computer Aided Design (ICCAD), 2021. (Invited Paper)
  • [DAC’21] X. Lin, L. Sun, F. Tu, L. Liu, X. Li, S. Wei, S. Yin, “ADROIT: An Adaptive Dynamic Refresh Optimization Framework for DRAM Energy Saving in DNN Training,” Design Automation Conference (DAC), 2021. (Acceptance Rate: 23%)
  • [MICRO’20] L. Liu, Z. Qu, L. Deng, F. Tu, S. Li, X. Hu, Z. Gu, Y. Ding, Y. Xie, “DUET: Boosting Deep Neural Network Efficiency on Dual-Module Architecture,” IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020. (Acceptance Rate: 15.6% = 66/422)
  • [DAC’20] F. Xiong, F. Tu, M. Shi, Y. Wang, L. Liu, S. Wei, S. Yin, “STC: Significance-Aware Transform-Based Codec Framework for External Memory Access Reduction,” Design Automation Conference (DAC), San Francisco, USA, 2020. (Acceptance Rate: 23%)
  • [ISVLSI’19] F. Xiong, F. Tu, S. Yin, S. Wei, “Towards Efficient Compact Network Training on Edge-Devices,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Miami, USA, 2019. (Invited Paper)
  • [TPDS’18] S. Yin, S. Tang, X. Lin, P. Ouyang, F. Tu, L. Liu, J. Zhao, C. Xu, S. Li, Y. Xie, S. Wei, “Parana: A Parallel Neural Architecture Considering Thermal Problem of 3D Stacked Memory,” IEEE Transactions on Parallel and Distributed Systems (TPDS), 2018.
  • [TCAD’18] J. Yan, S. Yin, F. Tu, L. Liu, S. Wei, “GNA: Reconfigurable and Efficient Architecture for Generative Network Acceleration,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2018.
  • [TCAD’18] S. Yin, S. Tang, X. Lin, P. Ouyang, F. Tu, L. Liu, S. Wei, “A High Throughput Acceleration for Hybrid Neural Networks with Efficient Resource Management on FPGA,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2018.
  • [DAC’18] X. Lin, S. Yin, F. Tu, L. Liu, X. Li, S. Wei, “LCP: A Layer Clusters Paralleling Mapping Method for Accelerating Inception and Residual Networks on FPGA,” Design Automation Conference (DAC), San Francisco, USA, 2018. (Acceptance Rate: 24.3%)